Dynamic Modeling in the Ready-Mix Concrete Industry

CEMEX
Pablo Vargas
Jorge Garza

ITESM
Rafael E. Bourguet

isee User Conference
October 2010
This power point presentation and its content is confidential and sole property of CEMEX. Therefore, it shall not be distributed and/or disclosed through any mean without CEMEX previous authorization.
AGENDA

CEMEX and Ready-Mix context

Ready-Mix order fulfillment processes and challenges
 • Supply chain processes
 • Tactical and operative modeling
 • Main challenges

SIMUL Model
 • Model structure
 • Demo

Conclusions
 • Why iThink?
 • Benefits for CEMEX
 • Evolution
CEMEX AND READY MIX CONTEXT

CEMEX is the world's largest ready-mix concrete and construction materials supplier and third largest cement producer

- ~1,800 ready-mix concrete plants worldwide

CEMEX is the major concrete producer in Mexico

- 300 batching plants
- 4 regional customer service and centralized dispatch offices

Ready-mix is a type of concrete that is specifically manufactured for delivery to the customer's construction site in a freshly mixed and unhardened state

Raw materials used

Just-in-time production process

www.cemexmexico.com
In CEMEX we have found difficulties in trying to use optimization and discrete tools to model the complexity of the execution in the ready-mix concrete business.

- **Dynamic simulation**
- **Optimization solver**
- **Discrete simulation**

ORDER FULFILLMENT IN THE SUPPLY CHAIN
Service and cost are the two main elements that play all the time in the Order Fulfillment processes.
READY-MIX ORDER FULFILLMENT
Main Challenges

The Order Fulfillment process of ready-mix concrete is recognized as one of the most challenging problems in manufacturing and logistics.

• Concrete is a perishable product with a usable time of less than 2 hrs
• The majority of the orders require time-synchronized, staggered deployment of several trucks.
• Concrete must be poured in a continuous fashion

Every 2-5 minutes, dispatchers have to evaluate among many alternatives to decide which individual truck to assign to a delivery and then determining which plant to direct a truck to after delivery completion.

Added to that, changes operative conditions and orders occur all the time:

• Unexpected delays in traffic or at customer sites
• High level of cancellations and modifications subject to weather conditions
• Variable transit times depending on the hours of the day
• Variable order amounts (bonus load)
• Mechanical failures of trucks and plants

The static allocation of trucks and plants can be inefficient in such a dynamic environment like ready-mix concrete
SIMUL MODEL
Inputs and Outputs

Scheduled and dispatched orders

Operative parameters

Input data (two excel spreadsheets)

Key indicators

Detail per plant

Model’s output

This simulation is helping dispatchers to anticipate potential issues and delays attributed to the lack of trucks or an over-demand in the plants.
Each load and its scheduled loading time is allocated to its corresponding plant.
When these 3 conditions met, then a loading minute is moved to the loading stock, and at the same time, a truck is moved to the loading area.

1. Loading point is free
2. Truck is available at the plant
3. Simulation minute equal or greater than the loading minute
SIMUL MODEL

Model Structure – Data reading and synchronization

The attributes of every delivery (i.e. scheduling loading time, transit time and m3) move simultaneously through the model.
SIMUL MODEL
Model Structure – Data reading and synchronization

In this example, the delivery to be loaded at minute 440 is synchronized with its corresponding transit time (30 minutes). All of this happens for all 13 plants at the same time.
Average cycle time is calculated from the minute the truck starts loading (1) until the same truck gets back to the plant (2):

- Truck starts loading at minute 440
- Journey time from plant to job: +30 min
- Unloading time at the customer: +15 min
- Journey time back to the plant: +30 min

- Truck is back to the plant at minute 515

For this load, the cycle time is 75 min
SIMUL MODEL
Model Structure – Simulation vs. Actual

The model runs 3 different scenarios at the same time

Scheduled loading minutes

Simulated loading minute
(considers operative restrictions)

Real loading minutes
SIMUL demo
WHY iThink?

iThnik allows to model the operative complexity in a friendly way using arrays, queues + ovens, etc.

Easy interaction with excel spreadsheets to upload the data into the model

Eliminates the “black box” approach creating trust and allowing users to make their decisions based on the information provided by the model
BENEFITS

Significant benefits have been obtained:

• Cost savings reduction in operative costs

• Increased on-time deliveries from 75% to 90%

• Improve fleet efficiency in 8-10% maintaining service levels
FUTURE DEVELOPMENTS OF SIMUL MODEL

• Optimal shipping plant based on cost
• Pump allocation
• Dynamic synchronization with other business lines (e.g. cement replenishment to ready-mix plants)
• Use on other transportation modes, such as rail and ship operation
• Simulation environments for new dispatchers or other stakeholders for training purposes
THANK YOU

For further information please contact:

CEMEX
Jorge Garza (jorge.garzac@cemex.com)
Pablo Vargas (pablocesar.vargas@cemex.com)
Monterrey, Mexico
+52(81)8328 3640

ITESM (Monterrey Tec)
Rafael E. Bourguet (bourguet@itesm.mx)
Industrial Engineering Department
Monterrey, Mexico
+52(81)8358 2000